

Available online at www.sciencedirect.com

Journal of Photochemistry Photobiology A:Chemistry

Journal of Photochemistry and Photobiology A: Chemistry 182 (2006) 288-295

www.elsevier.com/locate/jphotochem

Reverse electron transfer at the interface of semiconductor film in dye-sensitized solar cells

Masatoshi Yanagida*, Kazuhiro Sayama, Kazuyuki Kasuga, Mitsuhiko Kurashige, Hideki Sugihara**

Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, AIST-Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan

Abstract

The photovoltaic performance of dye-sensitized solar cells (DSCs) based on nanocrystalline TiO₂ films with co-absorbed $[NBu_4]_2[cis-Ru(Hdcbiq)_2(NCS)_2]$ (**BQ**; $[NBu_4]^+$ = tetrabutyl ammonium cation; $H_2dcbiq = 4,4'$ -dicarboxy-2,2'-biquinoline) and $[NBu_4]_2[cis-Ru(Hdcbiq)_2(NCS)_2]$ (**BQ**; $[NBu_4]^+$ = tetrabutyl ammonium cation; $H_2dcbiq = 4,4'$ -dicarboxy-2,2'-biquinoline) and $[NBu_4]_2[cis-Ru(Hdcbiq)_2(NCS)_2]$ (**BQ**; $[NBu_4]^+$ = tetrabutyl ammonium cation; $H_2dcbiq = 4,4'$ -dicarboxy-2,2'-biquinoline) and $[NBu_4]_2[cis-Ru(Hdcbiq)_2(NCS)_2]$ (**BQ**; $[NBu_4]^+$ = tetrabutyl ammonium cation; $H_2dcbiq = 4,4'$ -dicarboxy-2,2'-biquinoline) and $[NBu_4]_2[cis-Ru(Hdcbiq)_2(NCS)_2]$ (**BQ**; $[NBu_4]^+$ = tetrabutyl ammonium cation; $H_2dcbiq = 4,4'$ -dicarboxy-2,2'-biquinoline) and $[NBu_4]_2[cis-Ru(Hdcbiq)_2(NCS)_2]$ Ru(Hdcbpy)₂(NCS)₂] (N719; H₂dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) has been investigated. The excited state ($E_{\alpha x}^{*}$) of **BQ** is more positive than that of N719 and is comparable to the conduction band edge (E_{cb}) of the TiO₂. The short circuit photocurrent density (J_{sc}) and open circuit photovoltage (V_{∞}) decreased with increasing adsorbed **BQ** on the TiO₂ when **N719** and **BQ** were co-adsorbed on the TiO₂. The dark current of DSCs with co-absorbed BQ and N719 increased with increasing adsorbed BQ on the TiO₂. Therefore, we propose that an electron injected from N719 to TiO₂ and then trapped by BQ subsequently reacted with I_2 . The photovoltaic performance of DSCs with co-adsorbed N719 and BQ can be explained by reverse electron transfer from TiO_2 to I_2 through **BQ**. © 2006 Elsevier B.V. All rights reserved.

Keywords: Dye-sensitized solar cell; Ruthenium complex; Nanocrystalline TiO2; Reverse electron transfer; Electron transport

1. Introduction

Metal complex sensitizers and organic sensitizers have been synthesized and characterized with the goal of improving the solar-to-electric energy conversion efficiencies (η) of dyesensitized solar cells (DSC) that are based on nanocrystalline TiO_2 films [1–14]. The main strategy in the design of sensitizers is to enhance the spectrum response over a wide wavelength region and to maintain a sufficient thermodynamic driving force for electron injection from a sensitizer to TiO2 and electron transfer from I^- to the oxidized sensitizer [4–14]. Researchers have also focused on reverse electron transfer from TiO_2 to I_2 because reverse electron transfer from TiO_2 to I_2 is related to the open circuit photovoltage (V_{oc}) and the dark current of DSCs [15–27]. The $V_{\rm oc}$ is known to decrease with increasing dark current. The present work describes reverse electron transfer from TiO₂ to I₂ in DSCs.

The mechanism of reverse electron transfer from TiO₂ to I₂ has been investigated in DSCs based on nanocrystalline TiO₂ sensitized with [NBu₄]₂[*cis*-Ru(Hdcbpy)₂(NCS)₂] (N719; H_2 dcbpy = 4,4'-dicarboxy-2,2'-bipyridine), which is a typical sensitizer [2,3,15–27]. This research has focused on the basic understanding of reverse electron transfer from TiO₂ to I₂, namely, nano-structure dependent reverse electron transfer and electron diffusion in TiO₂. Sensitizer-dependent reverse electron transfer has recently been reported in nanocrystalline TiO₂ electrodes [26,28-31]. When coumarin dyes (NKX-2587, 2677, and 2697) containing a thiophene group are adsorbed on TiO₂, the dark current in coumarin dye-sensitized TiO₂ depends on the number of thiophene units in the molecule, and is larger than the dark current in N719-sensitized TiO_2 [30]. By investigating electron transport in TiO_2 , we found that the conduction band edge (E_{cb}) of TiO₂ sensitized with N719 is approximately 50 mV more negative than that of TiO₂ sensitized with [NBu₄]₂[Ru(Htcterpy)(NCS)₃] $(H_3 \text{tcterpy} = 4, 4', 4'' \text{-tricarboxy} - 2, 2': 6', 2'' \text{-terpyridine})$ [31]. The dark current of DSCs sensitized with ruthenium complexes increases with a positive shift in the reduction potential of the ruthenium complexes [14,32]. Recently, we found that electrons injected into a TiO₂ film co-absorbed with N719

^{*} Corresponding author. Tel.: +81 298 61 4641; fax: +81 298 61 6771. ** Corresponding author.

E-mail address: m.yanagida@aist.go.jp (M. Yanagida).

^{1010-6030/\$ -} see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jphotochem.2006.06.010

Fig. 1. Ruthenium complexes **BQ**, $[NBu_4]_2[cis-Ru(Hdcbiq)_2(NCS)_2]$ ($[NBu_4]^+$ = tetrabutyl ammonium cation; $H_2dcbiq = 4,4'$ -dicarboxy-2,2'-biquinoline), and **N719**, $[NBu_4]_2[cis-Ru(Hdcbpy)_2(NCS)_2]$ ($H_2dcpy = 4,4'$ -dicarboxy-2,2'-bipyridine).

and $[NBu_4]_2[cis-Ru(Hdcbiq)_2(NCS)_2]$ (**BQ**; H₂dcbiq = 4,4'dicarboxy-2,2'-biquinoline) react with I₂ predominantly through **BQ** [32]. The excited state (E_{ox}^*) of **BQ** is more positive than that of **N719** and is comparable to the conduction band edge (E_{cb}) of TiO₂ [10,11,14]. To evaluate reverse electron transfer in detail, we investigated the photovoltaic performances of nanocrystalline TiO₂ film electrodes with co-absorbed **N719** and **BQ** (Fig. 1).

2. Experimental procedures

2.1. Materials

All materials were reagent grade and were used as received unless otherwise noted. The [NBu₄]₂[*cis*-Ru(Hdcbiq)₂(NCS)₂] (**BQ**) was synthesized according to the literature method [11]. The [NBu₄]₂[*cis*-Ru(Hdcbpy)₂(NCS)₂] (**N719**) was purchased from Solaronix S.A. (Lausanne, Switzerland).

2.2. Preparation of samples

Nanocrystalline TiO₂ colloids and pastes were prepared as described previously [33]. The paste was printed on conductive glass plates (F-doped SnO₂, Nippon Sheet Glass Co., Tokyo, Japan, 8–10 Ω cm⁻²) using a screen-printing machine before calcination at 525 °C for 2 h [27]. The thickness (d) of the TiO₂ films was measured with a Tencor Alpha Step 500 profiler (KLA-Tencor Japan Ltd., Kanagawa, Japan). The geometric surface area of the TiO_2 film electrode was measured with a microscope (Nikon, Tokyo, Japan, model C-PS). The geometric surface area and d values for the TiO₂ were approximately $0.26 \,\mathrm{cm}^2$ and 6.5 µm, respectively [32]. The actual inner surface areas of the TiO₂ films were estimated by Brunauer-Emmett-Teller measurements. The specific surface area of the nanocrystalline TiO₂ films was estimated to be 91 m² g⁻¹. The diameter of the particles was approximately 17 nm. The density of the nanocrystalline TiO₂ film (1.2 g cm^{-3}) was calculated by measuring the weight of the film $(0.26 \text{ cm}^2 \times 28 \mu\text{m})$. The roughness factor of the TiO₂ ($d = 7 \mu m$) was 745. The TiO₂ electrodes were optically transparent.

The bare TiO₂ films were annealed at 450 °C for 1 h and dipped in ethanolic dye solution at a concentration of 3×10^{-4} M at room temperature for 20 h. The amounts of **BQ** and **N719** (Γ in mol cm⁻²) co-adsorbed on the TiO₂ film were controlled by changing the ratio between **BQ** and **N719** in the dipping solutions. The Γ values were determined by desorbing the dye from the TiO₂ film into a 0.01 M NaOH 1:1 (v/v) ethanol–water solution and measuring the absorbance ($A(\lambda)$) of the solutions at wavelength (λ) with a UV–vis absorption spectrometer (Shimadzu, Kyoto, Japan, UV3101PC). The amount of adsorbed **BQ** and **N719** were calculated according to the literature method [32]. The Γ values for **BQ** and **N719** are designated as Γ_{BQ} and Γ_{N719} , respectively.

2.3. Methods

A UV–vis absorption spectrometer (Shimadzu, Kyoto, Japan, UV3101PC) and a potentiostat (Solartron, Durham, UK, SI1280B) were used for spectroelectrochemical measurements. The UV–vis absorption spectra of the TiO₂ electrodes sensitized with dye were measured in an electrolyte consisting of 0.1 M [NBu₄]ClO₄ in acetonitrile. The thickness of the TiO₂ films for absorption spectra was around 2 μ m.

Photoelectrochemical measurements were performed in a sandwich-type two-electrode cell consisting of a dye-coated TiO₂ film electrode, a polypropylene film spacer ($60 \mu m$), an electrolyte solution, and a platinum (Pt) film counter electrode. The electrolyte solution in the cell consisted of 0.5 M 4-*tert*-butylpyridine, 0.6 M (1,2-dimethyl-3-propyl)imidazolium iodide, 0.05 M I₂, and 0.1 M LiI in acetonitrile.

The photovoltaic measurements were conducted by using a Xe lamp light source simulating the AM 1.5 spectrum (Wacom, Tokyo, Japan, WXS-80C-3, 100 mW cm⁻²). The incident monochromatic photon-to-current conversion efficiency (IPCE) was measured by using IPCE measurement system (Bunko Keiki Co., Tokyo, Japan, CED99-W) with a monochro-

Fig. 2. Proposed mechanism for reverse electron transfer from TiO_2 to I_2 through **BQ**.

matic Xe lamp. Intensity-modulated photovoltage spectroscopy (IMVS) measurements at open circuit were carried out using a combination of low-intensity-modulated illumination from a green diode laser (Cobolt Co., Stockholm, Sweden, Samba, 532 nm, 50 mW) and constant-bias light illumination from a Xe lamp (Ushio, Tokyo, Japan, UXL-500D-O), attenuated if necessary with a neutral-density filter. The laser-light illumination was modulated with an acoustic optical modulator (Isomet Co., Springfield, USA, 1205C-1). The intensity of the modulated light was decreased so that the photocurrent of the cell under the modulated-light irradiation was 11% of that under the constant-bias light irradiation. IMPS and IMVS measurements were performed using an impedance analyzer (Solartron, Durham, UK, Model 1260 impedance/gain-phase analyzer) to drive the laser and to analyze the photocurrent and photovoltage responses.

3. Model

The proposed mechanism of sensitizer-dependent recombination is shown in Fig. 2 [32]. When TiO₂ is covered with **N719**, the injected electron reacts with I₂ at the TiO₂/electrolyte interface (step 1). The normal reverse electron transfer (step 1) at **N719**-sensitized TiO₂ takes place thorough **N719** on TiO₂ or at bare TiO₂ surface. When ruthenium complex **BQ** is coadsorbed on TiO₂ sensitized with **N719**, **BQ** in the ground state traps the injected electrons (step 2), which then react with I₃⁻ (step 3). We defined the dye absorption ratio (ρ_{BQ}) as $\rho_{BQ} = \Gamma_{BQ}/(\Gamma_{BQ} + \Gamma_{N719})$. In addition, the relative cross section of electron trapping by a sensitizer on TiO₂ is defined as σ_{trap} . When the value of σ_{trap} for **N719** corresponds to the cross section for step 1 and is hypothetically defined to be 1, the possibility (P_{trap}) of an encounter with **BQ** adsorbed on the surface is given by

$$P_{\text{trap}} = \frac{\sigma_{\text{trap}} \Gamma_{\text{BQ}}(1-S)}{\Gamma_{\text{N719}} + \sigma_{\text{trap}} \Gamma_{\text{BQ}}} \tag{1}$$

where *S* is the ratio of the amount of reduced **BQ** to Γ_{BQ} ($0 \le S \le 1$). If an electron moves randomly and is trapped by a sensitizer on nanocrystalline TiO₂, the σ_{trap} value of **BQ** is expected to be 1. Therefore, the possibility of an encounter with **BQ** adsorbed on the surface is $\rho_{BQ}(1 - S)$. Eq. (1) can be simplified by the following assumptions. We assumed that an electron trapped by **BQ** on TiO₂ cannot be released from the trap site. In addition, because polypyridyl ligands of metal complexes tend to interact with I₂ [34], we assumed that the rate constant of the electron transfer from **BQ** to I₂ is much larger than the rate constant (k_{trap}) of electron trapping from the conduction band to **BQ**. Therefore, *S* is small ($S \ll 1$). Thus, P_{trap} can be described as $\sigma_{trap} \Gamma_{BQ}/\Gamma_{N719} + \sigma_{trap} \Gamma_{BQ}$. When DSCs are illuminated from the conductive glass side, the concentration (*n*) of the injected electrons in TiO₂ can be described as a function of the distance (*x*) from the conductive glass/nanocrystalline TiO₂ interface to an area parallel to the interface in the nanocrystalline TiO₂ (0 < x < d, see Fig. 2) and time (*t*). The electron density (*n*(*x*,*t*)), which depends on the absorption of light and on electron transport, is given by the following continuity equation [32]:

$$\frac{\partial n(x,t)}{\partial t} = D \frac{\partial^2 n}{\partial x^2} - \frac{n}{\tau} - k_{\text{trap}} n P_{\text{trap}} + \alpha_{\text{N719}} \eta_{\text{inj}} I_0 e^{-\alpha_s x} \qquad (2)$$

$$\frac{\partial S}{\partial t} = k_{\rm trap} n \frac{P_{\rm trap}}{\Gamma_{\rm BO}} - k_{\rm rv} S \tag{3}$$

$$\alpha_{\rm s} = \alpha_{\rm N719} + \alpha_{\rm BQ} \tag{4}$$

where α_{N719} is the absorption coefficient of **N719** on TiO₂, α_{BQ} the absorption coefficient of **BQ** on TiO₂, τ the apparent electron lifetime (s) in the nanocrystalline TiO₂ sensitized with **N719**, *D* the apparent electron diffusion coefficient (cm² s⁻¹) in **N719**-sensitized TiO₂, η_{inj} the electron injection yield from a dye to TiO₂, and I_0 is the incident photon flux corrected for reflection loss.

The absorption coefficients ($\alpha(\lambda)$) are given by

$$\alpha(\lambda) = 2.302A(\lambda)d^{-1}.$$
(5)

The $\alpha_s(\lambda)$ is calculated from the A(530 nm) of the TiO₂ with adsorbed **N719** and the TiO₂ with adsorbed **BQ**, and the Γ values of the TiO₂ films.From Eq. (2), the apparent electron lifetime (τ_{app}) and the apparent diffusion coefficient (D_{app}) in the TiO₂ films with co-adsorbed sensitizers are given by

$$\tau_{\rm app} = \frac{1}{1/\tau + k_{\rm trap} P_{\rm trap}} \tag{6}$$

$$D_{\rm app} = D. \tag{7}$$

Eq. (2) can be written as

$$\frac{\partial n(x,t)}{\partial t} = D_{\rm app} \frac{\partial^2 n}{\partial x^2} - \frac{n}{\tau_{\rm app}} + \alpha_{\rm N719} \eta_{\rm inj} I_0 e^{-\alpha_{\rm s} x}.$$
(8)

Eq. (8) has been used to analyze DSCs [15–27,35]. The diffusion length $L (L = \sqrt{D_{app} \tau_{app}}$ in cm) can be expressed as

$$L = \sqrt{D_{\text{app}}\tau_{\text{app}}} = \frac{L_{N719}}{\sqrt{1 + k_{\text{trap}}P_{\text{trap}}\tau}} = \frac{L_{N719}}{\sqrt{1 + \frac{k_{\text{trap}}\tau\rho_{\text{BQ}}}{1 + (\sigma_{\text{trap}} - 1)\rho_{\text{BQ}}}}}$$
(9)

where L_{N719} is the diffusion length in **N719**-sensitized TiO₂. The electron density n(0,t) at the conductive glass can be described as [35]

$$n(0,t) = n_0 \exp\left(\frac{qV}{mkT}\right) \tag{10}$$

where *V* is the bias, *q* the quantity of charge on the electron (C), *k* the Boltzmann's constant (J K⁻¹), *T* the absolute temperature (K), *m* the ideality factor, and n_0 is the electron density in the dark (cm⁻³). The n_0 value is also given by

$$n_0 = N_{\rm c} \exp\left(\frac{q(E_{\rm cb} - E({\rm I}_3^-/{\rm I}^-))}{kT}\right)$$
(11)

where N_c is the density of states in the conduction band and $E(I_3^-/I^-)$ is the redox potential of I_3^-/I^- .

The photocurrent density $(J_{photocurrent})$ is given by

$$J_{\text{photocurrent}} = q D_{\text{app}} \frac{\partial n(0, \infty)}{\partial x}.$$
 (12)

At the steady state $(\partial n(x,t)/\partial t = 0)$, $n(x,\infty)$ can be solved by using Eq. (7) for $\partial n(d,t)/\partial x = 0$. The $J_{\text{photocurrent}}$ can be expressed as a function of *L* as follows:

$$J_{\text{photocurrent}} = -qD_{\text{app}}\frac{n_0}{L}\exp\left(\frac{qV}{mkT}\right)\tanh\left(\frac{d}{L}\right) + \frac{q\eta_{\text{inj}}I_0\alpha_{\text{N719}}L}{2\cosh(d/L)}\left[\frac{\alpha_{\text{s}}\exp(-\alpha_{\text{s}}d) - (1/L)\exp(-d/L)}{1/L - \alpha_{\text{s}}} + \frac{\alpha_{\text{s}}\exp(-\alpha_{\text{s}}d) + (1/L)\exp(d/L)}{1/L + \alpha_{\text{s}}}\right].$$
(13)

When I_0 equals 0 in Eq. (13), the dark current density is given by

$$J_{\text{dark}} = -qD_{\text{app}}\frac{n_0}{L}\exp\left(\frac{qV}{mkT}\right)\tanh\left(\frac{d}{L}\right).$$
 (14)

From Eq. (14), J_{dark} increases with decreasing *L*. $J_{\text{photocurrent}}$ is also represented by

$$J_{\text{photocurrent}} = J_{\text{dark}} + J_{\text{sc.}}$$
(15)

When $J_{\text{photocurrent}} = 0$, the open circuit photovoltage (V_{oc}) is given by

$$V_{\rm oc} = \frac{mkT}{q} \ln\left(\frac{J_{\rm sc}}{J_{\rm dark}(V=0)}\right) \tag{16}$$

$$J_{\text{dark}}(V=0) = \frac{qD_{\text{app}}n_0}{L} \tanh\left(\frac{d}{L}\right).$$
(17)

From Eqs. (13)–(15), the relationship between the incident monochromatic photon-to-current conversion efficiency (IPCE) and L is given by

$$IPCE = \frac{J_{sc}}{qI_0} = \frac{\eta_{inj}\alpha_{N719}L}{2\cosh(d/L)} \left[\frac{(1/L)\exp(d/L) + \alpha_s\exp(-\alpha_s d)}{1/L + \alpha_s} - \frac{(1/L)\exp(-d/L) - \alpha_s\exp(-\alpha_s d)}{1/L - \alpha_s} \right].$$
(18)

According to Eq. (18), the IPCE values increase with increasing L.

Fig. 3. UV–vis absorption spectra of N719 (---) and BQ (—) adsorbed on a TiO₂ film electrode in 0.1 M [NBu₄]ClO₄ acetonitrile solution at an electrode potential of -0.1 V versus SCE.

4. Results and discussion

4.1. Adsorption of N719 and BQ on TiO₂

The Γ values of **BQ** and **N719** adsorbed TiO₂ films at $d=7 \mu m$ were 9.2×10^{-8} and $8.8 \times 10^{-8} \text{ mol cm}^{-2}$, respectively. If the dye completely covered the TiO₂, then **BQ** and **N719** both occupied an area of approximately 135 Å² [32], a value that is in good agreement with the value reported by Shklover et al. [36]. The number of adsorbed dye molecules per particle was estimated to be 670 molecules [32]. The Γ_{N719} is linearly related to the volume ratio (R_{N719}) of the **N719** solution to the total volume in a dipping solution. The ρ_{BQ} is also linearly related to the R_{N719} . These results show that the adsorption equilibrium constant of **BQ** is comparable to that of **N719**, assuming simple Langmuir adsorption.

UV-vis absorption spectra of BQ and N719 adsorbed on a TiO₂ film in 0.1 M [NBu₄]ClO₄ acetonitrile electrolyte solution are shown in Fig. 3. The spectra of BQ and N719 adsorbed on a TiO₂ film at -0.1 V versus SCE show peaks at 700 and 530 nm, which are similar to the spectra of BQ and N719 adsorbed on a TiO₂ film in air [11]. The peak at 700 nm represents a red shift of approximately 50 nm from the peak for BQ in DMF or ethanol solution, which indicates that **BQ** is sensitive to the surrounding conditions. The Γ can also be calculated from A(700 nm) = 0.15of **BQ** on TiO₂ film to be 1.3×10^{-8} mol cm⁻² on the supposition that the molar absorption coefficient ($\varepsilon_{BO}(700 \text{ nm})$) of **BQ** at 700 nm equals $12,000 \text{ M}^{-1} \text{ cm}^{-1}$. The Γ can also be calculated from A(530 nm) = 0.23 of N719 on a TiO₂ film to be $1.7 \times 10^{-8} \,\mathrm{mol}\,\mathrm{cm}^{-2}$ on the supposition that the molar absorption coefficient ($\varepsilon_{N719}(530 \text{ nm})$) of N719 at 530 nm equals 13,800 M^{-1} cm⁻¹. The $\varepsilon_{BO}(530 \text{ nm})$ was calculated to be $6400 \text{ M}^{-1} \text{ cm}^{-1}$ because A(530 nm) of **BQ** was 0.08. The ratio of the absorption coefficients $(\alpha_{BO}(\alpha_{N719} + \alpha_{BO})^{-1})$ at 530 nm was calculated to be 0.17 at $\rho_{BQ} = 0.3$ when for TiO₂ films with co-adsorbed **BQ** and **N719**. Light absorption by **BQ** on a TiO₂ film reduces the solar-to-electric energy conversion efficiency of DSCs and cannot be neglected at $\rho_{BQ} \ge 0.3$.

4.2. Short-circuit photocurrent (J_{sc})

Plots of IPCE(530 nm) versus ρ_{BQ} for the DSCs based on nanocrystalline TiO₂ films with co-adsorbed **BQ** and **N719** are shown in Fig. 4(a and b). The IPCE values were experimentally estimated from the following equation:

$$IPCE(\lambda) = \frac{1}{q} \left(\frac{J_{sc}(\lambda)}{I_0(\lambda)} \right) \times 100 = APCE(\lambda) \times LHE(\lambda)$$
(19)

where LHE(λ) is the light-harvesting efficiency and APCE(λ) is the absorbed photon-to-current conversion efficiency. LHE(λ) is defined as

$$LHE(\lambda) = 1 - 10^{-A(\lambda)}$$
(20)

where $A(\lambda)$ is expressed as

$$A(\lambda) = 1000\varepsilon\Gamma.$$
(21)

The IPCE values of the cells based on **BQ**- and **N719**-sensitized TiO₂ were 0.6% and 75% at 530 nm, respectively. IPCE(530 nm) values decreased with increasing ρ_{BQ} . The LHE values at 532 nm for $\rho_{BQ} \le 0.30$ were calculated to be 0.90. The IPCE values would be expected to be linearly related to LHE if the APCE values were 100%. However, the IPCE value for the solar cells with $\rho_{BQ} = 0.30$ was 22% at 530 nm, which was much smaller than expected. That is, the IPCE value decreased substantially even when a small amount (for example, $\rho_{BQ} = 0.04$) of **BQ** was co-adsorbed with **N719** on the TiO₂. Electron-transfer or energy-transfer interactions between **BQ** and **N719** seem to have been negligible [32]. We speculated that the η_{inj} does not depend on ρ_{BQ} . Therefore, an electron injected from **N719** to the TiO₂ reacted with I₂ through **BQ** on the TiO₂.

The *L* value of **N719**-sensitized solar cells at short circuit was assumed to be 37 µm [32]. Using the least-squares fit of the plot of IPCE versus ρ_{BQ} , k_{trap} and σ_{trap} were estimated to be 1800 cm³ s⁻¹ and 1.1, respectively. The best value of k_{trap} was estimated in the least-squares fit when σ_{trap} was changed from 0.1 to 20. We assumed the transmittance of the conductive glass was 80% at 530 nm because the maximum value of IPCE at 530 nm was 80% [14]. The *L* value calculated from Eq. (9) decreased with increase in ρ_{BQ} as shown in Fig. 4(c). Therefore, the IPCE value decreased with decrease in *L*. This result shows that an electron injected from **N719** to TiO₂ is

Fig. 4. Incident monochromatic photon-to-current conversion efficiency (IPCE in %) value at 530 nm for DSCs based on nanocrystalline TiO₂ with co-adsorbed **BQ** and **N719**. The ratio ρ_{BQ} is defined as $\Gamma_{BQ}/(\Gamma_{BQ} + \Gamma_{N719})$, where Γ_{BQ} and the Γ_{N719} are the amounts of **BQ** and **N719** adsorbed on the TiO₂, respectively. The lines of IPCE versus ρ_{BQ} were calculated from Eqs. (8) and (9) for values of k_{trap} and σ_{trap} of 1800 cm³ s⁻¹ and 1.1, respectively. (a) IPCE versus ρ_{BQ} at $0 \le \rho_{BQ} \le 0.2$. (b) log(IPCE) versus ρ_{BQ} at $0 \le \rho_{BQ} \le 1$. (c) Diffusion length (*L*) versus ρ_{BQ} calculated from Eq. (9) at $k_{trap} = 1800$ cm³ s⁻¹ and $\sigma_{trap} = 1$.

substantially trapped in **BQ** on TiO₂. From intensity-modulated photocurrent spectroscopy (IMPS) at short-circuit, k_{trap} and σ_{trap} at $J_{\text{sc}}d^{-1} = 7.5 \times 10^2$ mA cm⁻³ were estimated to be 75 cm³ s⁻¹ and 20, respectively [32]. Eqs. (9) and (18) cannot fully explain the plot of IPCE versus ρ_{BQ} , because *L*, *D*, k_{trap} , and σ_{trap} also depend on the electron density (*n*) or J_{sc} in TiO₂. The *n*-dependent *L*, *D*, k_{trap} , and σ_{trap} are neglected in Eqs. (9) and (18).

4.3. Dark current

An electron cannot be injected from the conductive material to the TiO₂ bulk crystalline electrode at the ohmic interface until the applied potential is more negative than E_{cb} . The onset of the potential for a dark current has been approximated to be the E_{cb} for bulk crystalline electrodes. However, dark current has been observed at potentials more positive than E_{cb} . The dark current increased with increasing *d*. Therefore, we assumed that electrons are injected from the conductive glass to the TiO₂ through trap sites in the TiO₂. The trapped electrons diffuse among the trap sites in the TiO₂. The trapped electrons reach the surface of the TiO₂ and react with I₂. When **BQ** is adsorbed on the TiO₂, the dark current substantially increased with increasing ρ_{BQ} .

According to electrochemical impedance measurements, the dark current-bias curves of DSCs (Fig. 5(a)) show the influence of many processes: resistance of the conductive glass, the reverse electron rate from TiO_2 to I_2 , the electron diffusion, the diffusion of I^- and $I_3^-,$ and the I^-/I_3^- redox reaction on Pt [37]. The reaction of $I_3^- + 2e^- \rightarrow 3I^-$ also depends on n [18]. In addition, the value of D_{app} increases with increasing bias (the negative shift of the quasi Fermi level in TiO₂) because the n value increases with increasing bias [38]. Therefore, analyzing the dark current-bias curves of DSCs is difficult. The dark current-bias curves were calculated from Eq. (14) at $k_{\text{trap}} = 1800 \text{ cm}^3 \text{ s}^{-1}, \sigma_{\text{trap}} = 1.1, m = 1, N_c = 3.1 \times 10^{21} \text{ [39], and}$ $E_{\rm cb} - E(I_3^{-}/I^{-}) = 0.95$ [39]. Fig. 5(b) suggests that the dark current shown in Fig. 5(a) clearly depends on ρ_{BO} . The increase in dark current is mainly due to the increase in the reverse electron rate from TiO_2 to I_2 .

4.4. Open circuit photovoltage (V_{oc})

From Eqs. (16) and (17), the V_{oc} can be represented by

$$V_{\rm oc} = \frac{mkT}{q} \ln\left(\frac{J_{\rm sc}\tau_{\rm app}/d}{qn_0L/d\,\tanh(d/L)}\right).$$
(22)

The $V_{\rm oc}$ has information about $E_{\rm cb}$ and $\tau_{\rm app}$. When at *L* is much larger than d ($L \gg d$), Eq. (22) can be simplified as

$$V_{\rm oc} = \frac{mkT}{q} \ln\left(\frac{J_{\rm sc}\tau_{\rm app}}{qn_0d}\right) \tag{23}$$

When the τ_{app} values of DSCs are identical, we can estimate the shift of E_{cb} . We found that E_{cb} of TiO₂ sensitized with [NBu₄]₂[Ru(Htcterpy)(NCS)₃] was more positive than that sensitized with **N719** [31]. The V_{oc} is well correlated with dark

Fig. 5. (a) Dark current–bias characteristics of DSCs based on nanocrystalline TiO₂ with co-adsorbed **BQ** and **N719**. (b) Dark current–bias curve calculated from Eq. (14) at $k_{\text{trap}} = 1800 \text{ cm}^3 \text{ s}^{-1}$, $\sigma_{\text{trap}} = 1.1$, $N_c = 3.1 \times 10^{21}$ [39], and $E_{\text{cb}} - E(I_3^{-7}/I^{-}) = 0.95$ [39].

current at the same J_{sc} value (or same *n* value). Eq. (23) can be also described as follows:

$$V_{\rm oc} = \frac{mkT}{q} \ln\left(\frac{J_{\rm sc}\tau_{\rm app}}{d}\right) - \frac{mkT}{q} \ln(qn_0). \tag{24}$$

The $J_{sc}\tau_{app}$ dependent V_{oc} values are shown in Fig. 6. The J_{sc} values are proportional to the photon flux (I_b) of the bias light. Because the J_{sc} values are also proportional to d when $d < 10 \,\mu\text{m}$, the J_{sc} values were normalized at d. The τ_{app} values of DSCs with co-absorbed **BQ** and **N719** estimated from IMVS decreased with increasing ρ_{BQ} [32]. The n_0 values can be calculated from the intercept of the plot in Fig. 6. The ratio of n_0 at $\rho_{BQ} = 0.04$ to that at $\rho_{BQ} = 0$ was 0.0123. We assumed that the n_0 values were constant for ρ_{BQ} values except for $\rho_{BQ} = 0$. The apparent

0

 $\rho_{_{\mathsf{BQ}}}$

Fig. 6. $V_{\rm oc}$ versus $J_{\rm sc} \tau_{\rm app} d^{-1}$ for $\rho_{\rm BQ} = 0$ (\bullet), 0.04 (\blacksquare), 0.13 (\blacktriangle), 0.30 (\Box), and 1 (\bigcirc).

L values under open circuit conditions decrease with increasing ρ_{BQ} .

5. Conclusion

The photovoltaic performance of dye-sensitized solar cells (DSCs) based on nanocrystalline TiO₂ films with co-absorbed [NBu₄]₂[*cis*-Ru(Hdcbiq)₂(NCS)₂] (**BQ**; [NBu₄]⁺ = tetrabutyl ammonium cation; H₂dcbiq = 4,4'-dicarboxy-2,2'-biquinoline) and [NBu₄]₂[*cis*-Ru(Hdcbpy)₂(NCS)₂] (**N719**; H₂dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) has been investigated. The excited state (E_{ox}^*) of **BQ** is more positive than that of **N719** and is comparable to the conduction band edge (E_{cb}) of TiO₂ [14,32]. We have proposed that an electron injected from **N719** to TiO₂ and then trapped by **BQ** subsequently reacted with I₂ [32]. The short circuit photocurrent density (J_{sc}), open circuit photovoltage (V_{oc}), and dark current of DSCs with co-absorbed **BQ** and **N719** can be explained by the reverse electron transfer from TiO₂ to I₂ through **BQ**.

The IPCE values of TiO₂ with co-absorbed **BQ** and **N719** were smaller than the value for N719-sensitized TiO_2 . The dark current increased with increasing $\rho_{\rm BO}$. The V_{oc} values of TiO₂ with co-absorbed BQ and N719 were smaller than the value for N719-sensitized TiO₂. We considered that the L value decreases with increasing ρ_{BO} . The IPCE decreased substantially even when a small amount of **BQ** was co-adsorbed with N719 on TiO₂. Interactions between N719 and BQ, such as electron transfer and energy transfer, seem to be negligible. Therefore, the η_{ini} does not depend on ρ_{BQ} . The injected electron must be rapidly trapped by **BQ** on TiO₂. The diffusion length (L) values are influenced by the electrolytes and by structural characteristics of the TiO_2 film such as the particle size, the distribution of particle sizes, the porosity of the film, and the electronic conditions at the grain boundary [15-25,27]. These results show that L also depends on whether **BQ** is adsorbed on TiO_2 . We conclude that

electron transport in TiO_2 is influenced not only by TiO_2 and the electrolyte but also by the presence of a sensitizer on the TiO_2 .

Acknowledgment

This work was supported by a Grant-in-Aid for Young Scientists (B) from the Japan Society for the Promotion of Science (JSPS).

References

- [1] B. O'Regan, M. Grätzel, Nature 353 (1991) 737.
- [2] Md.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115 (1993) 6382.
- [3] Md.K. Nazeeruddin, S.M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Inorg. Chem. 38 (1999) 6298.
- [4] Md.K. Nazeeruddin, P. Péchy, M. Grätzel, Chem. Commun. (1997) 1705.
- [5] Md.K. Nazeeruddin, P. Péchy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 123 (2001) 1613.
- [6] A. Islam, H. Sugihara, K. Hara, R. Katoh, S. Murata, H. Arakawa, New J. Chem. 26 (2002) 966.
- [7] A. Islam, H. Sugihara, K. Hara, L.P. Singh, R. Katoh, M. Yanagida, Y. Takahashi, S. Murata, H. Arakawa, J. Photochem. Photobiol. A 145 (2001) 135.
- [8] R. Argazzi, C.A. Bignozzi, T.A. Heimer, F.N. Castellano, G.J. Meyer, Inorg. Chem. 33 (1994) 5741.
- [9] T.A. Heimer, E.J. Heilweil, C.A. Bignozzi, G.J. Meyer, J. Phys. Chem. A 104 (2000) 4256.
- [10] A. Islam, K. Hara, L.P. Singh, R. Katoh, M. Yanagida, S. Murata, Y. Takahashi, H. Sugihara, H. Arakawa, Chem. Lett. (2000) 490.
- [11] A. Islam, H. Sugihara, L.P. Singh, K. Hara, R. Katoh, Y. Nagawa, M. Yanagida, Y. Takahashi, S. Murata, H. Arakawa, Inorg. Chim. Acta 322 (2001) 7.
- [12] M. Yanagida, T. Yamaguchi, M. Kurashige, G. Fujihashi, K. Hara, R. Katoh, H. Sugihara, H. Arakawa, Inorg. Chim. Acta 351 (2003) 283.
- [13] M. Yanagida, A. Islam, Y. Tachibana, G. Fujihashi, R. Katoh, H. Sugihara, H. Arakawa, New J. Chem. 26 (2002) 963.
- [14] M. Yanagida, T. Yamaguchi, M. Kurashige, K. Hara, R. Katoh, H. Sugihara, H. Arakawa, Inorg. Chem. 42 (2003) 7921.
- [15] L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E.A. Ponomarev, G. Redmond, N.J. Shaw, I. Uhlendorf, J. Phys. Chem. B 101 (1997) 10281.
- [16] L.M. Peter, D. Vanmaekelbergh, in: R.C. Aklire, D. Kolb (Eds.), Advances in Electrochemical Science and Engineering, vol. 6, Wiley-VCH, Weinheim, 1999, pp. 77–163.
- [17] L.M. Peter, E.A. Ponomarev, G. Franco, N. Shaw, J. Electrochim. Acta 45 (1999) 549.
- [18] A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayantha, J. Phys. Chem. B 104 (2000) 949.
- [19] G. Schlichthörl, S.Y. Huang, J. Sprague, A.J. Frank, J. Phys. Chem. B 101 (1997) 8141.
- [20] G. Schlichthörl, N.G. Park, A.J. Frank, J. Phys. Chem. B 103 (1999) 782.
- [21] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, L. Luther, Electrochim. Acta 47 (2002) 4213.
- [22] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida, J. Phys. Chem. B 106 (2002) 10004.
- [23] S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B 107 (2003) 8607.
- [24] S. Nakade, W. Kubo, Y. Saito, T. Kanzaki, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B 107 (2003) 14244.

- [25] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B 109 (2005) 348.
- [26] S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura, Y. Wada, S. Yanagida, Electrochem. Commun. 5 (2003) 804.
- [27] M. Yanagida, K. Miyamoto, K. Sayama, K. Kasuga, M. Kurashige, S. Takano, G. Fujihashi, Y. Abe, H. Sugihara, Electrochim. Acta 51 (2006) 3993.
- [28] J.N. Clifford, G. Yahioglu, L.R. Milgrom, J.R. Durrant, Chem. Commun. 12 (2002) 1260.
- [29] P.G. Hoertz, D.W. Thompson, L.A. Friedman, G.J. Meyer, J. Am. Chem. Soc. 124 (2002) 9690.
- [30] K. Hara, K. Miyamoto, Y. Abe, M. Yanagida, J. Phys. Chem. B 109 (2005) 23776.
- [31] K. Miyamoto, M. Yanagida, K. Sayama, H. Sugihara, Y. Abe, Chem. Lett. 35 (2006) 336.

- [32] M. Yanagida, K. Miyamoto, K. Sayama, K. Kasuga, M. Kurashige, Y. Abe, H. Sugihara, J. Phys. Chem. B, submitted for publication.
- [33] C.J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc. 80 (1997) 3157.
- [34] B.J. Walter, C.M. Elliott, Inorg. Chem. 40 (2001) 5924.
- [35] S. Södergren, A. Hagfeldt, J. Olsson, S.-E. Lindquist, J. Phys. Chem. 98 (1994) 5552.
- [36] V. Shklover, Y.E. Ovchinnikov, L.S. Braginsky, S.M. Zakeeruddin, M. Grätzel, Chem. Mater. 10 (1998) 2533.
- [37] L. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett. 84 (2004) 2433.
- [38] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 87 (2005) 117.
- [39] A. Usami, Chem. Phys. Lett. 292 (1998) 223.